Multiple imputation approaches for the analysis of dichotomized responses in longitudinal studies with missing data.
نویسندگان
چکیده
Often a binary variable is generated by dichotomizing an underlying continuous variable measured at a specific time point according to a prespecified threshold value. In the event that the underlying continuous measurements are from a longitudinal study, one can use the repeated-measures model to impute missing data on responder status as a result of subject dropout and apply the logistic regression model on the observed or otherwise imputed responder status. Standard Bayesian multiple imputation techniques (Rubin, 1987, in Multiple Imputation for Nonresponse in Surveys) that draw the parameters for the imputation model from the posterior distribution and construct the variance of parameter estimates for the analysis model as a combination of within- and between-imputation variances are found to be conservative. The frequentist multiple imputation approach that fixes the parameters for the imputation model at the maximum likelihood estimates and construct the variance of parameter estimates for the analysis model using the results of Robins and Wang (2000, Biometrika 87, 113-124) is shown to be more efficient. We propose to apply (Kenward and Roger, 1997, Biometrics 53, 983-997) degrees of freedom to account for the uncertainty associated with variance-covariance parameter estimates for the repeated measures model.
منابع مشابه
چند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملAccuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملSelection of Variables that Influence Drug Injection in Prison: Comparison of Methods with Multiple Imputed Data Sets
Background: Prisoners, compared to the general population, are at greater risk of infection. Drug injection is the main route of HIV transmission, in particular in Iran. What would be of interest is to determine variables that govern drug injection among prisoners. However, one of the issues that challenge model building is incomplete national data sets. In this paper, we addressed the process ...
متن کاملکاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی
Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...
متن کاملMarginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2010